Abstract

This is a short note on isogonality, intended to exhibit the uses of isogonality in mathematical olympiads.
§ Notations

Here are some notations we’ll use in this note.

1. The abbreviation ‘wrt’ stands for ‘with respect to’.
2. \(I, O, H, G\) stand for the incenter, circumcenter, orthocenter and the centroid of \(\triangle ABC\) respectively.
3. \((XY), (XYZ)\) stand for the circle with \(XY\) as diameter and the circle through non-collinear \(X, Y, Z\) respectively.
4. \(P^*\) stands for the isogonal conjugate of a point \(P\).
5. \(P_{\infty \parallel MN}\) stands for the point at infinity on the line \(MN\).
6. \(\equiv\) stands for equality of cross-ratios due to perspectivity at \(P\).

§ Isogonai Lines

Definition

Two lines meeting at a point \(A\) are said to be isogonal with respect to an angle \(\angle BAC\) if they can be obtained by a reflection over the angle bisector of \(\angle BAC\).

Also if one line (not necessarily through \(A\)) can be obtained from the other via a reflection about the angle bisector and a homothety, then they are called antiparallel with respect to the angle.
• **Properties**

In the following we let l and m be isogonal lines with respect to an angle $\angle BAC$.

1. Let P be a point on l and the feet of perpendiculars from P to AB, AC be P_c, P_b. Then $P_bP_c \perp m$.

 Proof. Exercise.

2. (Symmedians Lemma) Let M be the midpoint of BC and let the tangents to the circumcircle meet at X. $AX \cap (ABC) = K$ and $AX \cap BC = J$. Then the following hold:

 - AK is a symmedian in $\triangle ABC$.
 - $\frac{BJ}{JC} = \left(\frac{AB}{AC}\right)^2$.
 - $BCAK$ is a harmonic quadrilateral.
 - $ABK \sim AMC$.
 - (AO) and (BOC) meet on the midpoint of AK.
 - BC is a symmedian in both BAK and CAK.
 - BC is one angle bisector of $\angle AMK$ and MX is the other one.
 - Tangents to (ABC) at A and K meet on BC.

 Proof. Exercise. One of the proofs of the first fact is in the examples. Try finding atleast 3 others.

3. Let the cevians AD_1 and AD_2 be isogonal wrt BAC. Then the circumcircles of AD_1D_2 and ABC are tangent together.

 Proof. Exercise.

4. (Isogonal Line Lemma): Let P and Q be points on l, m respectively. BP intersects CQ at L_1 and BQ intersects CP at L_2. Then AL_1 and AL_2 are isogonals wrt $\angle BAC$.

 Proof. Exercise. This also appears in St. Petersburg Mathematical Olympiad.

5. Let P be a point on the perpendicular bisector of BC and let P' be its inverse in the circumcircle. Then AP and AP' are isogonal wrt $\angle BAC$.

 Proof. Follows from the Symmedians lemma.
\section*{\textsection Isogonal Conjugates}

\textbf{Definition}

Two points \(P \) and \(P^* \) are called isogonal conjugates if \(\overline{AP} \) and \(\overline{AP^*} \) are isogonal wrt \(\angle A \), \(\overline{BP} \) and \(\overline{BP^*} \) are isogonal wrt \(\angle B \) and \(\overline{CP} \) and \(\overline{CP^*} \) are isogonal wrt \(\angle C \).

\textit{Proof.} Usually proved using trig Ceva, but see the following for a synthetic proof.

\begin{itemize}
\item \textbf{Properties}
\end{itemize}

1. Let \(P \)'s reflections in \(BC, CA, AB \) be \(P_a, P_b, P_c \) respectively. Then the circumcenter of the triangle \(\triangle P_aP_bP_c \) is the isogonal conjugate of \(P \), henceforth denoted by \(P^* \).

\textit{Proof.} Let \(Q \) be the required circumcenter. Then from \(AQP_b \cong AQP_c \), \(\angle QAP_b = \angle QAP_c \), from which \(AQ \) and \(AP \) are isogonal wrt \(\angle BAC \). From this and other similar relations, \(P \) and \(Q \) are isogonal conjugates, as required.

2. If \(D_1 \) and \(D_2 \) are as in Property 3 of section on properties of isogonal lines, then \(\frac{BD_1}{CD_1} = \frac{BD_2}{CD_2} = \frac{AB^2}{AC^2} \).

\textit{Proof.} Exercise

3. The pedal triangles of \(P \) and its isogonal conjugate have the same circumcircle with the circumcenter being the midpoint of \(PP^* \).

\textit{Proof.} Homothety.

4. \(AP \cap BC = D \) and \(AP^* \cap (ABC) = D' \). Then \(AD.AD' = AB.AC \).

\textit{Proof.} Inversion

5. \(\angle BPC + \angle BP^*C = \angle A \)

\textit{Proof.} Angle chasing

6. The insimilicenter and the exsimilicenter of \((BPC)\) and \((BP^*C)\) lie on \((ABC)\).

\textit{Proof.} Exercise.

7. If the circumcenters of \((BPC)\) and \((BP^*C)\) are \(O_1 \) and \(O_2 \) then \(AO_1 \) and \(AO_2 \) are isogonal with respect to \(\angle BAC \).
Proof. Follows from the previous fact and Property 5 in the section on properties of isogonal lines.

8. Let \mathcal{E} be a conic with foci F_1 and F_2, with the tangents t_1 and t_2 from a point X meeting it at X_1 and X_2. Then the following hold true:

- XX_1 and XX_2 are isogonal with respect to $\angle X_1XX_2$.
- XF_i bisects $\angle X_1F_iX_2$ where $i = 1$ or 2.
- The normals and the tangents at X_i bisect $\angle F_1X_iF_2$ where $i = 1$ or 2.
- The reflection of F_i over t_i is collinear with the other focus and one tangency point.

Also for every pair of isogonal conjugates, a conic tangent to all three sides of $\triangle ABC$ and having them as the foci exists.

Proof. Exercise. Use a good characterisation of the tangent to the conic (sum and difference of distances).

Some useful isogonal conjugates

<table>
<thead>
<tr>
<th>Point</th>
<th>Isogonal Conjugate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthocenter</td>
<td>Circumcenter</td>
</tr>
<tr>
<td>Centroid</td>
<td>Point of concurrence of symmedians</td>
</tr>
<tr>
<td>Gergonne Point</td>
<td>Insimilicenter of the circumcircle and the incircle</td>
</tr>
<tr>
<td>Nagel Point</td>
<td>Exsimilicenter of the circumcircle and the incircle</td>
</tr>
<tr>
<td>In/Excenters</td>
<td>Themselves</td>
</tr>
<tr>
<td>Nine point center</td>
<td>Kosnita point</td>
</tr>
</tbody>
</table>

For more, see the Kimberling Encyclopedia of Triangle Centers.
§ Examples

1. Symmedians lemma

Proof. Let the reflection of A in M be D. Then BD, BX are isogonal and CD, CX are isogonal. Thus, D and X are isogonal conjugates, and so AD and AX are isogonal, as desired.

2. (IMO 2000 SL G3): Do there exist points D, E, F on BC, CA, AB of an acute triangle $\triangle ABC$ respectively such that AD, BE, CF concur and $OD + DH = OE + EH = OF + FH = R$?

![Diagram](image)

Proof. Yes, there exist such points.
Consider the conic with foci O, H and tangent to the sides of $\triangle ABC$. Since the reflections of H over the sides lie on the circumcircle, for any point X of the ellipse, $OX + XH = R$. Now Brianchon’s theorem finishes the problem.

3. (USAMO 2008 P2): Let the A–median of a triangle ABC be AM, and let the perpendicular bisectors of AB and AC meet AM at D and E. BD and CE intersect at F. Prove that A, F, O and the midpoints of AB and AC are concyclic.
Proof. Note that $\angle BFC = 2\angle A = \angle BOC$ and so B, F, O, C lie on a circle. We need that the circle with AO as diameter and (BOC) meet at F, for which it suffices to show that AF is a symmedian. Consider the isogonal conjugate of F, say F^*. By the angle conditions, both (AF^*B) and (AF^*C) are tangent to BC, and thus by radical axis, AF^* is a median, which completes the proof.

The point F^* is sometimes called the A–humpty point (Warning: this notation is not at all standard). We shall encounter this point later too.
4. (AoPS): Let I be the incenter of ABC and let l be the line through I and perpendicular to AI. The perpendicular to AB through B and that to AC through C meet l at E and F respectively. The feet of perpendiculars from E and F to l onto BC are M and N. Prove that (AMN) and (ABC) are tangent together.

Proof. Firstly note that if I_b, I_c are the excenters opposite B and C, then B, A, E lie on the circle with II_b as diameter and so I_b, E, M are collinear by angle chasing. In fact, I_bI_cFE is a rectangle.

If the external and the internal bisectors of $\angle BAC$ meet BC at D_2, D_1 respectively, then,

$-1 = (B, C; D_1, D_2) \overset{I_b}{=} (I_c, I_b; A, D_2) \overset{P_{\infty \parallel AI}}{=} (N, M; D_1, D_2)$

and now since $AD_1 \perp AD_2$, they are the bisectors of $\angle MAN$, from which it follows that AM and AN are isogonal cevians, from which the conclusion follows. \blacksquare
§ Problems

The problems here are not sorted by difficulty; by easy we mean less interesting problems, by hard we mean interesting ones.

- Easy ones

1. Complete all the proofs left as exercises.

2. Prove that $IO = IH$ if and only if one of the angles of the triangle is 60°.

3. Prove that the isogonal of AP wrt $\angle BPC$ and that of AP^* wrt $\angle BP^*C$ are symmetric wrt BC. (In fact, they meet on the tangency point of some special conic with BC).

4. Prove the following facts about the A–Humpty point:
 - Circles tangent to BC and passing through A, B and A, C respectively, the circle with AH as diameter, the circumcircle of BHC, the A–median, and the circumcircle of the triangle formed by the midpoint of AH, the reflection of O in BC and the midpoint of BC all pass through the A–Humpty point.
 - It is the inverse of the midpoint of BC under the inversion with radius $\sqrt{AH \cdot AD}$ and center A where H is the orthocenter and AD is an altitude in ABC.

5. Find the complex and the barycentric coordinates of the isogonal conjugate of an arbitrary point P, assuming that the circumcircle is the unit circle.

- Medium Problems

1. Let O be the circumcenter of ABC and let the tangents to the circumcircle at A, B, C form a triangle XYZ, and let the orthic triangle of ABC be DEF. Prove that the isogonal conjugate of O wrt DEF is the orthocenter of XYZ.

2. Let the points of intersection of AP, BP, CP with BC, CA, AB be A', B', C' respectively. Then prove that if the isogonal conjugate of P wrt ABC is Q then the reflections of AQ, BQ, CQ in $B'C', C'A', A'B'$ respectively concur at a point.

3. Let DEF be the pedal triangle of P wrt ABC, and let the points X, Y, Z be on PD, PE, PF respectively such that $PD \cdot PX = PE \cdot PY = PF \cdot PZ$. Then prove that AX, BY, CZ concur at a point whose isogonal conjugate is on the line OP^*.

4. Let K be the symmedian point of ABC, the isogonal conjugate of G. Prove the following properties:
 - It is the unique point which is the centroid of its pedal triangle.
(b) The midpoint of the A–altitude, the midpoint of BC and K are collinear.

(c) (Lemoine circle): Lines parallel to the sides of the triangle through K are drawn. Prove that the points of intersections of these parallels with the sides are concyclic.

(d) (Another Lemoine circle): Lines antiparallel to the sides of the triangle through K are drawn, meeting the remaining sides in U,V,W,X,Y,Z. Prove that these points are concyclic.

(e) The symmedians meet (ABC) at K_a, K_b, K_c. Prove that K is the symmedian point of the triangle formed by these points too.

- **Harder tasks**

1. (EMMO 2016\footnote{This year’s test was named “Every Mathematician Must Outperform”}) Let ABC be a triangle, the orthocenter of whose intouch triangle is P. The reflections of P over the perpendicular bisectors of BC, CA, AB are X, Y, Z, and the midpoints of YZ, ZX, XY, BC, CA, AB are D, E, F, A_1, B_1, C_1. Prove that A_1D, B_1E, C_1F concur at the radical center of the nine-point circles of I_aBC, I_bCA, I_cAB, where I_a, I_b, I_c are the excenters of the triangle ABC, opposite to A, B, C respectively.

2. (ELMO 2016, wording modified\footnote{This was “Elmo Lives Mostly Outside”}) Let ABC be a triangle and let DEF be the intouch triangle, AD, BE, CF being cevians. AI meets DE, DF at M, N respectively. S and T are points on BC such that $\angle MSN = \angle MTN = 90^\circ$. Prove that:

 (a) (AST) is tangent to the circumcircle of ABC.

 (b) (AST) is tangent to the incircle of ABC.

 (c) (AST) is tangent to the A–excircle of ABC.\footnote{This wasn’t part of the original problem, but looks good.}
§ Hints to harder tasks

1. For any general P, prove that the concurrency point is actually the complement of the isogonal conjugate of P, where the complement of any point is its image under the homothety $H(G, \frac{1}{2})$.

 – Then prove that the isogonal conjugate of the given point P is the concurrency point of the Euler lines of IBC, ICA, IAB, known as the Schiffler point.

 – To finish, prove that the complement of the Schiffler point is the radical center of the given nine-point circles.

2. Use isogonal lines, inversion, etc, etc, etc.
§ References
